UC San Diego **3-D Kinematics in the ONC Core**

Christopher A. Theissen¹ (ctheissen@ucsd.edu), Quinn Konopacky¹, Jessica Lu², Dongwon Kim², Stella Zhang¹, Chih-Chun Hsu¹, Laurie Chu³, Lingfeng Wei¹

> ¹Center for Astrophysics and Space Sciences, UC San Diego ²Department of Astronomy, UC Berkeley ³Institute for Astronomy, University of Hawaii

Radial Velocity Measurements in the ONC

We are building the largest sample of high-precision (< 0.5) km/s) radial velocity measurements in the core of the ONC (within 2' of the Trapezium).

We are using NIRSPEC^{1,2} on Keck II. This offers a resolution of $R \sim 24000$ and broad coverage across the Kband.

NASA Hubble Fellowship Program

To date, we have measured 56 sources, targeting the reddest/lowest-mass sources³.

Forward-Modeling NIR Data

All sources are simultaneously fit for stellar (Teff, logg, vsini, RV, veiling), telluric (airmass, PWV), and instrumental parameters (LSF) using the emcee⁴.

Is the ONC expanding?

Combined with proper motions⁷ and the distance to the ONC, we have 3-d velocities to understand the kinematics of the ONC core.

1-d velocities follow the expectation for a virialized cluster (similar to previous studies⁷).

The RV velocities deviate from a virialized state, but line-of-sight velocities likely suffer from complications due to unresolved binaries. with 3-d kinematics.

This requires us to break/quantify the degeneracies with veiling. We are currently looking into other sampler methods more robust to multimodal probability distributions (e.g., MULTINEST¹⁰).

REFERENCES	
(1) McLean et al. 2000, in proc SPIE, Vol 4008	(7) Kim et al. 2019, AJ, 157, 109
(2) McLean et al. 1998, in proc SPIE, Vol 3354	(8) Da Rio et al. 2014, ApJ, 795, 55
(3) Hillenbrand & Carpenter 2000, ApJ, 540, 236	(9) Bonnell et al. 2008, MNRAS, 389, 1556
(4) Foreman-Mackey et al. 2013, PASP, 125, 306	(10) Feroz et al. 2009, MNRAS, 398, 1601
(5) Tran et al. 2012, in proc SPIE, Vol 8451	(11) Tobin et al. 2009, ApJ, 697, 1103
(6) Kounkel et al. 2018, AJ, 156, 84	

