Exoplanets and the Search for Life around Low-mass Stars

Christopher Theissen

How many exoplanets do we know about?

Exoplanet Discoveries Through the Years

As of May 10, 2016

Kepler Space Telescope

The "Habitable" Zone

LIGHT

TIME

LIGHT

TIME

Kepler-16

Credit: Doyle et al. (2011)

Planet finding sensitivity depends on the radius of the star and planet.

Finding Exoplanets: Measuring Radial Velocities

Finding Exoplanets: Measuring Radial Velocities

Finding Exoplanets: Measuring Radial Velocities

The magnitude of the wobble depends on the mass of the star

Low-mass Stars: A Primer

- Less than 60% the mass of the Sun
- Cool stars (Temperatures < 4600 K)
- Red dwarfs
- M dwarfs

Low-mass Stars are Everywhere

~70% of all stars are low-mass stars

Credit: RECONS

Low-mass Stars are Everywhere (with Earth-sized Planets!)

Todd J. Henry¹ Mark R. Boyd² Serge Dieterich¹ Charlie T. Finch³ Wei-Chun Jao¹ Adric R. Riedel¹ John P. Subasavage⁴

THE *KEPLER* D

Ten Parsec Census 2010

SARAH BALLARD^{1,3} AND JOHN ASHER JOHNSON² ¹ University of Washington, Seattle, WA 98195, USA; sarahba@uw.edu ² Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA Received 2014 October 13; accepted 2015 November 8; published 2016 January 8

COPLANAR PLANETS

DWARFS: HALF OF SYSTEMS CONTAIN FIVE OR MORE

ABSTRACT

We present a statistical analysis of the Kepler M dwarf planet hosts, with a particular focus on the fractional

www.recons.org

OMY AMONG

HЕ

Credit: RECONS

They have incredibly long (hydrogen burning) lifetimes

They have incredibly long (hydrogen burning) lifetimes

Planets orbit close-in

KOI-961 and Its 3 Known Planets

Jupiter and Its 4 Largest Moons

Io Europa Ganymede Callisto

Credit: Muirhead et al. (2012)/NASA

Planets orbit close-in

TRAPPIST-1 System

Credit: Gillon et al. (2016, 2017)/NASA

Planets orbit close-in

Let's run the numbers

~300,000,000,000 M dwarfs in the Galaxy

Let's run the numbers

~300,000,000,000 M dwarfs in the Galaxy

~2.5 planets per star (many in the habitable zone)

Let's run the numbers

~300,000,000,000 M dwarfs in the Galaxy

~2.5 planets per star (many in the habitable zone)

~ 750 billion (750,000,000,000) potentially Earth-like planets in our Galaxy!

Just around low-mass stars!

Looking to the future

JWST

Hubble mirror

Biosignatures

Starlight filters through planetary atmosphere

Methane in the planet's atmosphere absorbs starlight

Credit: NASA/ESA

Complications: Energy Output

Credit: Segura et al. (2016)

Complications: Energy Output

Credit: Segura et al. (2016)

Complications: Flares

Credit: Drake et al. (2016)

Complications: Planetary Collisions

Collisions of Terrestrial Worlds: The Occurrence of Extreme Mid-infrared Excesses around Low-mass Field Stars

Christopher A. Theissen¹ and Andrew A. West

Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA; ctheisse@bu.edu Received 2016 October 25; revised 2017 February 23; accepted 2017 February 24; published 2017 March 20

Abstract

We present the results of an investigation into the occurrence and properties (stellar age and mass trends) of lowmass field stars exhibiting extreme mid-infrared (MIR) excesses $(I_{\rm IR}/L_{\rm I} \ge 0.01)$. Stars for the analysis were Credit: Theissen & West (2016)

Similar to the Moon forming event

Let's not stop looking for life around low-mass stars just yet.

Let's not stop looking for life around low-mass stars just yet.

Thanks

Tabby's Star

Finding Exoplanets: Direct Imaging

Finding Exoplanets: Direct Imaging

Finding Exoplanets: Astrometry

Finding Exoplanets: Astrometry

Finding Exoplanets: Microlensing

Finding Exoplanets: Microlensing

Transit Timing Variations

Transit Timing Variations